发布日期:2025-08-03 08:37 点击次数:153
from statsmodels.tsa.arima.model import ARIMA# 加载历史收盘价数据data = pd.read_csv('stock_prices.csv', index_col='Date')# 历练模子model = ARIMA(data['Close'], order=(5,1,0)) # (p,d,q)参数model_fit = model.fit()# 权衡异日3天forecast = model_fit.forecast(steps=3)二、监督学习分类1. 特征工程(关键设施)# 本事缠绵狡计data['MA5'] = data['Close'].rolling(5).mean()data['RSI'] = ta.rsi(data['Close'], timeperiod=14)data['MACD'], signal, _ = ta.macd(data['Close'])# 构造标签(次日涨跌)data['Target'] = np.where(data['Close'].shift(-1) > data['Close'], 1, 0)# 删除缺失值data.dropna(inplace=True)2、常用分类算法(我之前写的例子即是这种步地)
from sklearn.ensemble import RandomForestClassifierfrom xgboost import XGBClassifier# 特征/标签拆分X = data[['MA5', 'RSI', 'MACD', 'Volume']]y = data['Target']# 就地丛林rf = RandomForestClassifier(n_estimators=100)rf.fit(X_train, y_train)# XGBoostxgb = XGBClassifier(n_estimators=500, learning_rate=0.01)xgb.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=20)三、集成法子1. 特征交融模子# 组合本事缠绵与新闻情谊technical_features = data[['RSI', 'MACD', 'Bollinger']]sentiment_features = pd.read_csv('news_sentiment_scores.csv')combined_features = pd.concat([technical_features, sentiment_features], axis=1)2、模子堆叠
from sklearn.ensemble import StackingClassifier# 界说基模子base_models = [ ('rf', RandomForestClassifier()), ('xgb', XGBClassifier())]# 元模子使用逻辑追思stacker = StackingClassifier( estimators=base_models, final_estimator=LogisticRegression(), cv=5)stacker.fit(X_train, y_train)四、强化学习法子基于DQN的交往战略class TradingEnv(gym.Env): def __init__(self, data): self.data = data self.action_space = Discrete(3) # 0:抓有, 1:买入, 2:卖出 self.observation_space = Box(low=0, high=1, shape=(6,)) def _next_obs(self): return self.features[self.current_step] def step(self, action): # 践诺交往逻辑 # 狡计收益、更新抓仓 return obs, reward, done, info# 构建DQN智能体model = DQN('MlpPolicy', env, verbose=1, policy_kwargs=dict(net_arch=[64,64]), learning_rate=0.0005)model.learn(total_timesteps=100000)
股票权衡骨子是概率问题赌钱赚钱官方登录,提议同一以下战略:
使用组合权衡(多个模子的投票机制)
设置动态仓位贬责(权衡置信度越高仓位越大)
如期进行模子再历练(提议每月或季度更新)
同一基本面分析作念二次考证赌钱赚钱官方登录
本站仅提供存储做事,总计内容均由用户发布,如发现存害或侵权内容,请点击举报。